Synthesis of trichlorophosphazo-trifluoromethane and -pentafluoroethane

WALTER LEIDINGER and WOLFGANG SUNDERMEYER⁺

Department of Inorganic Chemistry, University of Heidelberg, D-6900 Heidelberg, Im Neuenheimer Feld 270, (Federal Republic of Germany)

SUMMARY

The trichlorophosphazo compounds $CF_3-N=PCl_3$ and $C_2F_5-N=PCl_3$ could be obtained by reacting the corresponding perfluoroalkyl dichloroamines and phosphorous trichloride.

INTRODUCTION AND RESULTS

Trichlorophosphazo compounds have been studied for a long time. However, the smallest perfluorinated monomer compounds, CF_3 -NPCl₃ ($\underline{1}$) and C_2F_5 -NPCl₃ ($\underline{2}$) with fluorine in the α -position relative to nitrogen, have not yet been prepared. A probable reason for this may have been the difficulty in obtaining the free amines, which are the usual starting materials for preparing trichlorophosphazo compounds. As is known from the literature [1,2], CF_3 -NH₂ as well as CF_3 -CF₂-NH₂ easily lose HF to give the corresponding nitriles.

It seemed reasonable to use the dichloroamines instead. Because of the different polarities of N-Cl and P-Cl bonds [3], we decided to react the dichloroamines with phosphorous pentachloride when chloride should be eliminated.

$$R_{F}^{-CF_{2}-N} \xrightarrow{f}{} PC1_{3} \xrightarrow{r}{} R_{F}^{-CF_{2}-N=PC1_{3}} + C1_{2}$$

$$R_{F}^{-F_{2}-N} \xrightarrow{f}{} R_{F}^{-CF_{2}-N=PC1_{3}} + C1_{2}$$

$$R_{F}^{-F_{3}} \xrightarrow{f}{} R_{F}^{-CF_{2}-N=PC1_{3}} + C1_{2}$$

⁺Author to whom correspondence should be addressed.

It has been reported [3] that no reaction was observed between $FC(0)NC1_2$ and chlorinating agents $(PC1_3, PC1_5, A1_2C1_6)$; however, during our experiments we observed a side reaction between CF_3-NC1_2 and $PC1_5$, which was catalysed by UV-light. The yields obtained were poor. The main reaction was the reduction of the dichloroamine to form the azocompound, $CF_3-N=N-CF_3$ [4].

Accordingly, it was thought convenient to allow the dichloroamine to interact with a reagent susceptible to oxidation. Thus using PCl₃ we obtained the trichlorophosphazo-trifluoromethane and -pentafluoroethane in high yields.

 $R_{F}-CF_{2}-NC1_{2} + 2 PC1_{3} \longrightarrow R_{F}-CF_{2}-N=PC1_{3} + PC1_{5}$ $R_{F} = F, CF_{3} \qquad \qquad 1, 2$

Both compounds are colourless liquids under normal conditions. They hydrolyse very rapidly and decompose above $105^{\circ}C$. Structures $\underline{1}$ and $\underline{2}$ were confirmed by IR, $^{19}F-NMR$, $^{31}P-NMR$ and mass spectrometry.

EXPERIMENTAL

The IR-spectra were recorded on a Perkin-Elmer 457 spctrometer; the 19 F-NMR on a JEOL C 60 HL; the 31 P-NMR on a BRUKER HFX-90 spectrometer and the mass spectra on a VARIAN MAT CH7.

The dichloroamines were obtained by the reaction of the imidosulfurdifluorides R_F -CF₂-NSF₂ with Cl-F in CF₃Cl. They must be extremely pure, since traces of SF₄ (from their preparation) gave R_F - CF₂-NSCl₂, which was difficult to separate by 'trap to trap' distillation. Therefore the crude dichloroamines were shaken with PCl₅ at -40°C and afterwards with mercury. Other starting materials were obtained from commercial sources and purified by drying or distillation.

General procedure:

0.05 mol dichloroamine was condensed in a glass bulb containing 0.1 mol phosphorous trichloride. The reaction mixture was warmed slowly from -196° C to -100° C and stirred at this temperature for 1/2 h until a precipitate was formed. The solid was separated by filtering in the absence of air while cooling the filtrate with dry ice. The crude product (filtrate) amounted to a yield of about 75 %. The pure compounds were obtained after separation by GLC on a 400 x 0.2 cm column packed with 30% FS 1265 on chromosorb P-AW 80-100 mesh.

The 19 F-NMR of $\underline{1}$ shows a doublet at +41.8 ppm (CFCl₃ external standard) with a coupling constant of J(F_P) = 33.8 cps.

The ${}^{31}P$ -NMR shows a quartet at +4.4 ppm; +5.3 ppm; +6.3 ppm and + 7.3 ppm (H₃PO₄ external standard) with a coupling constant of J(P-CF₃)= 32.9 cps. The IR-spectrum shows absorptions at (cm⁻¹): 1490 m, 1415 vs, 1330 m, 1195 vs, 1145 vs, 820 m, 650 m, 600 s and 580 s.

The mass spectrum (70eV; m/e; % rel.int.): 219 (M^+) 43.8; 200 (M-F) 100; 184 (M-C1) 28.8; 114 (CF_3NP) 10.6; 101 ($PC1_2$) 15.4; 95 (CF_2NP) 18.3; 85 (PFC1) 8.7; 69 (CF_3) 11.5. It shows metastable peaks at: m/e 42, 92.5 and 105.5 for the transitions: m/e 114 \rightarrow 69; 155 \rightarrow 120 and 184 \rightarrow 139.

The ¹⁹F-NMR of 2 shows two doublets, their intensities correspond to an a:b = 2:3 ratio; δ_a = +78.6 ppm; $J(CF_2-P)$ = 33.3 cps and δ_b = +86.6 ppm with a coupling constant of $J(CF_3-P)$ = 5 cps. (CFCl₃ external standard). No CF_3-CF_2 coupling was observed; this curious fact has already been described in the literature for C_2F_5NX (X = SF₂, SCl₂, SO) compounds [5]. The ³¹P-NMR shows a complex triplet, consisting of three quartets at +0.6 ppm,+1.5 ppm and +2.4 ppm; the coupling constant for them is 5 cps. The coupling constant for the basic triplet ist 34.1 cps. The IR-spectrum shows absorptions at (cm⁻¹): 1475 m, 1450 s, 1420 m, 1335 vs, 1235 vs, 1145 m, 1110 m, 1050 m, 705 w, 630 sh, 600 s.

The mass spectrum (70eV; m/e; % rel.int.): 250 $(M-F)^+$ 4.9; 234 (M-C1) 13.5; 200 $(M-CF_3)$ 100; 184 (CF_3NPC1_2) 36.8; 130 (CF_2NPC1) 7.1; 101 $(PC1_2)$ 8.5;85(PFC1)12.8; 69 (CF_3) 12.8. It shows metastable peaks at: m/e 55.8, 92.5, 120, 145 and 160 for the transitions: m/e 130 \rightarrow 85, 200 \rightarrow 136, 200 \rightarrow 155, 234 \rightarrow 184 and 250 \rightarrow 200.

ACKNOWLEDGEMENTS

We thank the Fonds der Chemischen Industrie, the Alcoa Foundation and the Deutsche Forschungsgemeinschaft for financial support in this work. W. Leidinger has a DAAD scholarship. - We also thank Dr. R. Geist for the GLC-MS-coupling measurements as well as Dr. G. Schilling for the 31 P-NMR-spectra.

REFERENCES

- 1 G. Klöter, W. Lutz, K. Seppelt and W. Sundermeyer, Angew. Chem. <u>89</u> (1977) 754; Angew.Chem.Int.Ed.Engl., 16 (1977) 707.
- **2** R.C. Kumar, J.M. Shreeve, J.Am.Chem.Soc., <u>1</u>02 (1980) 4958.
- 3 R.A. De Marco, J.M. Shreeve, J. Fluorine Chem., 1 (1971/72) 269 - 276.
- 4 J.B. Hynes, B.C. Bishop and L.A. Bigelow, Inorg. Chem. <u>6</u> (1967) 417.
- 5 M. Lustig, Inorg. Chem. 5 (1966) 1317.

88